Data-driven wall models for Reynolds Averaged Navier–Stokes simulations

نویسندگان

چکیده

This article presents a data-based methodology to build Reynolds-Averaged Navier–Stokes (RANS) wall models for aerodynamic simulations at low Mach numbers. Like classical approaches, the model is based on nondimensional local quantities derived from friction velocity uτ, viscosity μw, and density ρw. A fully-connected neural network approximates relation u+=f(y+,p+). We consider reference data (obtained with RANS fine meshes up wall) of attached turbulent flows various Reynolds numbers over different geometries bumps, covering range pressure gradients. After training networks subset data, paper assesses their ability accurately recover unseen conditions that have been trimmed an interface height where learned law applied. The network’s interpolation extrapolation capabilities are quantified carefully examined. Overall, when tested within its capabilities, shows good robustness accuracy. global error skin coefficient few percent behaves consistently all considered test cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-Aliasing Filters for Coupled Reynolds-Averaged/Large-Eddy Simulations

The increasing complexity of engineering problems makes the coupling of multiple simulation codes attractive. In fluid mechanical applications, the physical range of flow phenomena that can be modeled can be extended significantly by coupling flow solvers based on the Reynolds-averaged Navier Stokes (RANS) approach and on LargeEddy Simulations (LES). These separate flow solvers run simultaneous...

متن کامل

Steady-State Evaluation of 'Two-Equation' RANS (Reynolds-averaged Navier-Stokes) Turbulence Models for High-Reynolds Number Hydrodynamic Flow Simulations

This report presents an evaluation of the steady-state capability of the turbulence models available in the commercial CFD code FLUENT 6.0, for their application to the simulation of hydrofoil turbulent boundary layer separation at high-Reynolds numbers. Four widely applied two-equation RANS turbulence models were qualitatively and quantitatively assessed through comparison with high-quality ex...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A Framework for Coupling Reynolds-Averaged With Large-Eddy Simulations for Gas Turbine Applications

Full-scale numerical prediction of the aerothermal flow in gas turbine engines are currently limited by high computational costs. The approach presented here intends the use of different specialized flow solvers based on the Reynolds-averaged Navier-Stokes equations as well as large-eddy simulations for different parts of the flow domain, running simultaneously and exchanging information at the...

متن کامل

Outflow Conditions for Integrated Large Eddy Simulation/Reynolds-Averaged Navier–Stokes Simulations

The numerical flow prediction of highly complex flow systems, such as the aerothermal flow through an entire aircraft gas turbine engine, requires the application of multiple specialized flow solvers, which have to run simultaneously in order to capture unsteady multicomponent effects. The different mathematical approaches of different flow solvers, especially large eddy simulation (LES) and Re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Heat and Fluid Flow

سال: 2023

ISSN: ['1879-2278', '0142-727X']

DOI: https://doi.org/10.1016/j.ijheatfluidflow.2022.109097